

Hydra Fuzz

Based on the Sola Sound Tonebender™ 3-knob

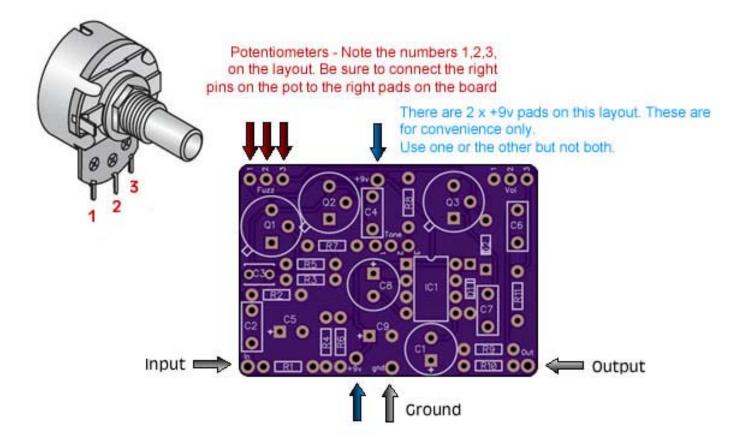
Bill of materials

	Resistors	Capacitors
R1	1M	C1 22uf
R2	47K	C2 100nf (104)
R3	220K	C3 220pf
R4	10K	C4 100nf (104)
R5	10K	C5 10uf
R6	3.3K	C6 100nf (104)
R7	10k	C7 2.2nf (222)
R8	18k (or Trim)	C8 10uf
R9	10k	C9 100uf
R10	10k	
R11	220k (or Jumper)	Transistor
		Q1 PNP Germanium Transistor
	Diode	Q2 PNP Germanium Transistor
D1	1n4001	Q3 PNP Germanium Transistor
D2	1n270	
		Potentiometer
	IC	Volume 100KB Lin
IC1	Charge Pump (TC1044scpa)	Tone 100KB Lin
		Fuzz 100KB Lin

1590b

The board spacing will fit a 1590b enclosure. You can mount 9mm pots directly to the board.

Pot Tapers


Pot tapers of the original Sola Sound Tonebender™ used all linear potentiometers, even for the volume control. I would definitely recommend a log pot for the volume control to avoid bunching.

Bias Mod

Replace the 18k resistor with a 50k trim to dial in some splatty misbiased fuzz sounds with your Hyrda Fuzz! Wire in a pot instead for an easily adjustable bias control.

R11

Replacing R11 with a jumper will allow more output volume from the effect

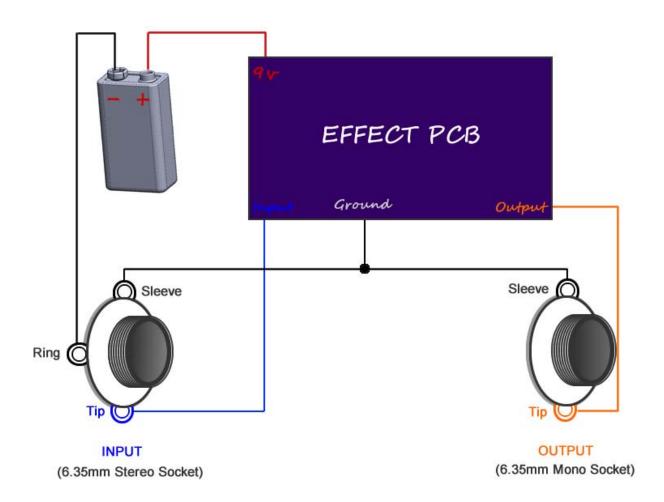
The 9mm Alpha potentiometers that are included in our kits can be soldered directly to the PCB saving the hassle of connecting them with wires. Pay close attention to the pinout of the pot (1, 2, 3)

Snip off or bend these four mounting lugs on the back of the pot to allow the pcb to be lowered closer to the back of the pot for soldering.

However DO NOT remove the entire plate from the back of the pot.

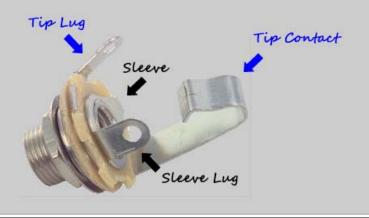
You will also need to ensure that the back plate of the pot does not touch anything.

Use some double side tap to insulate it from the pcb


This is the component

side of the pcb

To help you visualise how the effect can be installed inside an enclosure (if you decided to do so later on) the dotted line above indicates the enclosure.


Testing Your Effect

Using aligator clips or soldering directly, wire your effect as in the following...

Input and Output Sockets

Pay close attention to the lugs of your sockets. Look at them side on so that you can distinguish the sockets individual layers. For instance the tip lug is connected to tip contact. The stereo jack looks the same as the socket below except it has an extra lug and contact for "Ring".

Boxing up your effect

Watch my offboard wiring tutorial for information on wiring this effect inside an enclosure with LED, stompswitch, etc

http://www.youtube.com/watch?v=z6fpwU8RY_0